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Absmact-A weft-eoflfrnated beam reflected repeatedly within a cireufar

cross section nndergoea periodic foeuahrg and defocusing. This behavior is
of interest for tracking of beams around a type of acoustic surface ~wave
disk delay line, and it also relates to beam monitoring after oblique
injection into the endface of a multimode optical fiber. The problem is

analyzed by considering fii the field excited by am isotropic tine sawrm
inside a dielectric cylinder, and then converting tbia to Gaumimr beam

excitation by assigning a complex value to the source coordinate bration.
Because the wavelength is SW compared to ttre cylinder radius+ ray-opti-
cal methods are employed to construct the sohrtio~ with inclusion of such
novel ingredients -m the lateral ray shift on a curved boundary. Results are

obtained for the amplitude and phase of ttre ray and beam fiel~ anti for
such beam parameters as the location of tbe foew+ the minimum beam

width and the rate of beam divergence between successive reflection%

I. INTRODUCTION AND SUMMARY

T HE TRACKING of Gaussian beams undergoing

successive total reflections at a concave bounclary

separating two dielectric media is of interest for several

applications. In a type of acoustic surface wave delay line

[1], a well-collimated acoustic beam is launched on the top

surface of a circular piezoelectric disk so that it impinges

obliquely on the rim. After traversing the rim, the beam

passes across the underside of the disk, reemerges on the

top side, and so on. This process can be rnodeledl as

multiple reflection at a circular boundary, with the effects

of the rim accounted for by an equivalent bounciary

reflection coefficient. The utility of the device is depen-

dent upon how well the multiply reflected beams remain

collimated; the delayed signal cannot be extracted if the

beam has too great a divergence. Although the piezoe-

lectric disk is anisotropic, a first step requires the under-

standing clf the beam behavior in an isotropic environ-

ment. The extension to anisotropy and (or) to noncircular

rims has in fact already been accomplished [2] but is

relegated to a future publication.

Another application is to optical communication wlhere

dielectric fiber waveguides with a homogeneous core are

excited by a Gaussian beam injected obliquely across the

fiber endface. This problem has been treated in the litera-

ture by guided-mode analysis [3]. However, for optical

fiber waveguides with a large core diameter, the direct

tracking c~f a beam reflected successively at the core

boundary is relevant since the spot size of a focused
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incident beam is then small comparedl to the fiber cross

section and requires the superposition of many guided

modes. It may therefore be advantageous to track the

incident beam directly into the fiber rather than to express

the field at the outset in terms of a modal expansion. The

conversion to guided modes may be perfomed at that

location along the waveguide where the multiply reflected

beams can no longer be individually resolved. Tlhe three

dimensional tracking problem may be better understood

with a priori knowledge of the behavior of the cross-sec-

tional fields. While the multiply reflected beam in a wavE-

guide with constant refractive index continues to expand

in the axial direction, the concave curvature of the

boundary causes successive refocusing in the cross-sec-

tional plane. Such refocusing of the three-dimensional

beam field, and indeed its basic cross-sectional characteri-

stics, are contained fully within the axially independent

solution for a sheet beam that is launched in a circulm

domain. The results developed here have subsequently

been employed for three-dimensional analysis [4].

Finally, the two-dimensional beam solution is of inter-

est for application to curved layers encountered in irt-

tegrated optics, when the beam field is injected, so as to

cling to the outer boundary (whispering gallery type of

propagation).

To effect the solution of the beam problem, we emplc~y

a recently formulated new technique whereby an incident

two-dimensional Gaussian beam is generated from aln

incident line source (cylindrical wave) field by iiAg@

complex values to the source coordinates [5]. “Ilms the

Green’s function problem, long of interest in lradiaticm

and diffraction theory, is also fundamental for the calcu-

lation of fields due to Gaussian beams. For the applica-

tions addressed here, attention is focused on higlh-

frequency asymptotic solutions. These can be developed

directly by ray-optical methods, without the :need for

departing initially from an exact formulation of the field

problem. Apart from yielding the desired inforrnaticm

directly, the ray-optical method is important because it

can, within the present context, accommodate geometries,

such as noncircular domains and(or) anisotropic material,

for which exact solutions are not available.

While the complex-source-point technique converts the
ray-optical field into a general beam field, it is adequate

(for beams that remain well collimated) to consider only

the paraxial region surrounding the beam axis since tlhe

field elsewhere is very small. Under these conditions, it

suffices to restrict the source-excited ray-optical field to

the vicinity of a central ray that subsequently becomes tlhe
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beam axis, i.e., it is adequate to treat a particular thin ray

bundle rather than the entire family of rays. It is then

found that the real parameters governing the phase and

amplitude behavior of the field in the ray bundle also

describe the field in the Gaussian beam when the analytic

continuation to complex source point coordinates is per-

formed. Thus, as in the parallel plane case [6], a rigorous

link is provided between point-source-excited ray optics

and paraxial beam optics, in terms of the conventional

ray-optical parameters which have strong physical con-

tent. This aspect facilitates examination of the multiply

reflected beam field solution with respect to periodic

refocusing, beam spreading, and other physical attributes.

Some numerical results provide further insight into these

propagation phenomena,

Fundamental to the study of multiply reflected beams is

the treatment of a single reflection. When, as in our case,

the beam impinges at an angle larger than the critical

angle for total reflection, the reflected beam emerges from

a shifted position. This lateral shift for rays or beams, not

previously explored for a curved boundary, has been

developed and incorporated into our theory. While inclu-

sion of the lateral shift may be inconsequential at a single

reflection, the shifts accumulate for multiple reflections

and are in fact essential when one wishes to convert the

multiply reflected ray or beam fields into eigenmode fields

in the circular cross section; omission of the lateral shift

leads to an incorrect dispersion equation for the eigen-

modes. These conclusions are similar to those noted previ-

ously for the planar geometry [6], and they have been

confirmed by comparing the ray-optical fields employed

here with the asymptotic solution of the rigorously for-

mulated Green’s function [7]. It should be emphasized

that the remarks above apply to the general case where

the refractive index contrast between the dielectric wave-

guide and the exterior may be substantial. For the optical

fiber with small index difference between core and clad-

ding, the effects of the lateral shifts are minimized.

The presentation is arranged as follows. Section H-A

contains the two-dimensional ray-optical fields excited by

an axial line source, their paraxial approximations in the

vicinity of a preferred ray, and the effects of including or

omitting the lateral shifts for totally reflected rays on a

boundary with incidence-angle-dependent reflection coef-

ficient. Some details pertaining to the ray-optical formulas

are given in Appendix A, and the legitimacy of ignoring
the ray shift for fields having undergone only a few

reflections is demonstrated in Appendix B. The conver-

sion of the line-source and point-source-excited fields to

beam fields is performed in Section III. Included in the

presentation are ray diagrams that provide a physical

understanding of the behavior of the various field solu-

tions and also numerical results for quantitative assess-

ment of the evolution of the multiply reflected beam

profile. The discussion of these results in Section IV

provides further insight into the beam behavior.

II. RAY-OPTICAL FIELDS

A. General Rq-Optical Fields

The incident field due to an electric line source in an

unbounded dielectric is normalized so that Gi.C is the

infinite space Green’s function

. exp (ikD + ire/4), kD>l (1)

where k is the wavenumber in the medium and D is the

distance from the source. A time dependence exp( – i~t) is

suppressed, Then the axial electric field G along a ray

after a single reflection at the wall with radius “a” is given

in [8]. As shown in Appendix A, the ray-optical field after

s reflections can be constructed in a similar manner by

ray tracing and monitoring the ray tube cross section. The

result is

{

Lfo
G-+ + 1= ,1/2

-& lr(ya)1’eik+e-i(~/2)”] -it~/4)

fo o
(2)

where

4=2’%-L’0+L’+’@ (Ya) (2a)

and r(ya) = lr(ya)] exp [iO(y.)] is the boundary reflection
coefficient. The lengths Lo, Lfo, La, and L, defined in Fig.

1, are measured from the perpendicular bisector of the

central ray (shown dashed) in a ray tube: La= a sin ya is

the half length of the central ray between reflections, Lo

locates the source point S, Lfo is the distance to a ray tube

focus (point of tangency of the central ray with the caustic

of the reflected ray family, which is not shown), and L is

the distance to an observation point. The focal distance is

given by

Lfo= LaLo(La–2sLo)-1 or -!-- = ~ – ~. (3)
Lfo o a

Thus the focus moves toward the center of the reflected

ray cord (i.e., LfoaO) as the number s of reflections
increases sufficiently. The orientation of the central ray is

fixed by the angle yd. Depending on location along the

multiply reflected ray, L and L,. may be positive or

negative; in regions 1, they are positive, while in regions 2,

they are negative. Focusing need not occur after every

reflection (of counts the number of times that the central

ray passes through a ray tube focus). In fact, a real focus
L = Lfo is possible only when L. and Lfo have the same

algebraic sign, and when ILyol <La; otherwise, there will

be a virtual focus. The following rule concerning solutions

of the equation L = Lfo is found to apply:

s > (La/2 LO) + 1/2, real focus in region 1

.S< (La/2 Lo) – 1/2, real focus in region 2

La La I
—_; <~<_
2L0 2L0 +7’

no real focus. (4)

It may also be noted from (3) that 2sL0 = La implies that
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Fig. 1. Multiply reflected ray and ray tube (without lateral shift). (a)
Muftiply reflected ray. WI Calculation of ray tube cross section (see
Appendix A).

Fig. 2. Multiply reflected ray and ray tube (with lateral shift).

the reflected ray tube, after s reflections and before the

next reflection, is made up of parallel rays.

After total reflection at the wall, the ray emerges with

an amplitude modified by the reflection coefficient [7]

sinya – i(cos2y. – nz)l’z(l – k?)
r(ya)= -

sinya + i(cos2ya – 722)1’2(1 – ia )

=ll’(ya)lexp[iO( ya)] (5)

where the relative refractive index n is smaller than unity

and

8=exp{-2ka~c0s’a[(cosya)2/~2-1]’2d~}. (5a)
n

The parameter 8 arises from the leakage of the totally

reflected incident ray field across the concave boundary;

it is assumed that the leakage is small. Then to the first

order in 8:

(5b)

19(ya) = –2 tan- 1[(cos\a – n2)’’2/sin y.]. (5c)

The total field at an observation point ~, as computed

by ray optics, is given by the sum of all fields along rays

passing through F. This implies inclusion of all rays with

such initial angles that they reach fi after an appropriate

number of reflections. Formula (2) evidently fails when

L~LfO and must then be augmented by a caustic transi-

tion function [8]. For the present, we shall exclude such

observation points from our considerations; this does mot

restrict, however, the subsequent complete description of

the beam field (see (19)).

If the ray is to be tracked over many reflections, it is

appropriate to employ the modified trajectories and fields

obtained when the lateral ray shift L+ on the boundary is

included. In that event, the central ray is displaced (shown

in Fig. 2) with the optical length Y in (2a) modified to

The ray shift is given by Lq ~= – d(3/dk@, where

k+= k cos ya is the wavenumber along the @ direction.

This expression is inferred from the known shift for a

plane boundary [6] by regarding the angular coordinate @
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central ray
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my tube focus

Fig. 3. Parameters for paraxial approximation.

at the point of impact of the ray as locally rectilinear. It

can be shown [7] that Lo determined by this procedure is

in accord with the rigorously derived result. The corre-

sponding phase accumulation at each reflection is then

k@L@ as in (6). The term ILfO(L – LfO)- 1I in (2) becomes
(see Appendix A)

F————~~fol+l Lfo
~,. /. (7)

S LLfo
L–Lfo–~ U2 d(cos Ya

)2

The lengths L, Lo, and Lfo are now measured along the

new trajectories.

It can be shown that, at a given observation point, the

field computed from (2) and (5) with the nonshifted path

in Fig. 1 agrees with the field computed from (6) and (7)

with the laterally shifted path in Fig. 2 provided that the

number of reflections is small and that L #Lfo. This is

analogous to the result found previously for the plane

stratified layer problem [6]; the derivation is sketched in

Appendix B. Elsewhere [6], [7] we have performed a

calculation whereby the multiply reflected ray fields are

summed into guided modes and have shown that the

laterally shifted paths must be utilized in order to obtain

the correct asymptotic modal dispersion equation. How-

ever, for ray tracing with only a few reflections, the

conventional nonshifted ray paths can be retained.

B. Paraxial Approximation

The ray-optical fields in (2) or their ray-shift-modified

form in (6) and (7) are now expressed so that they de-

scribe observation points in the vicinity of the central ray

in terms of quantities pertaining to that ray. This is

accomplished by expanding the phase along a neighboring

ray in terms of the parameters for the central ray (the ray

amplitude is insensitive to this correction). Thus introduc-

ing a perpendicular distance d from a point f on the

central ray to an observation point ~ = (~, d), one finds

that, without inclusion of the lateral shift (see Fig. 3),

16d) ‘2sL. - Lo+ L-I-#+ s@(Ya)> R= L–Lfo

(8)

provided that d<< IR 1. Subject to this modification, the

formulas in (2) or in (6) and (7) describe the field in the

paraxial region about the central ray defined by the angle

Y.. Note that R is the radius of curvature of the wave-

Y

Irbeam axis,~

Fig. 4. Parameters for beam excitation.

front, positive for convex and negative for concave curva-

tures.

When the lateral ray shift on the boundary is included,

y(~,d) in (8) must be modified to read

s de

– x d(cos y=)
cos y. (8a)

where

S LLfo d28
(8b)~= L – Lfo – ~ U2 d(cos y.

)2 “

HI. MULTIPLY REFLECTED BEAM FIELDS

The preceding results for line-source-excited fields can

be converted into excitation by a sheet beam by assigning

a complex value to the source point. If the beam axis is

inclined at an angle a with respect to the positive x axis

and the beam waist is centered at X. thereon, one replaces

[5] the real source point (x’,y’) by (x. -i- ib cos a, ib sin a),

where b is a positive constant related to the beam width

W. at the waist by b = kw~/2 (see Fig. 4). Thus the polar
source coordinates (p’, ~’) are transformed into

) =[(Pocos ~+ib)2+Pis~2~]”2~f = (X12 ~y/2 1/2
(9)

=cos-l(pO~_’a)-(~-a) (lo)

where PO= (x; + y;) 1/2= xv

Since PO cos a = Lo, one observes from the expression

for p’, and for # expressed in terms of p’, that the above

transformations from line source to beam fields can be

accomplished by the replacement

LO*LO + ib. (11)

The focal distance Lf becomes, accordingly,

La(Lo+ib) =L, +iLi
(12)‘f= La –24LO+ ib) f f



SHIN AND FELSEN: MULTIPLY REFLECTED GAUSSIAN BEAMS

—

Fig. 5. Multiply reflected paraxial beam. A and 23 denote the loca-
tions of the ray tube foci and beam foci, respectively.

where

~,_ ~ LO(L. –2sLO) –2sb2
f– a

(L. - 2sLO)2+4s2b2

L;
L;=b

(L. -2sLO)2+4s2b2 “

(13)

(14)

From (8), the paraxially approximated optical length be-

comes, omitting the lateral shift,

d2
$~=2sL. –(LO+ib)+L+

2(L– L; – iL~)

o

Lo

0/2

b

Lo /’fo

[

L’f

o
I . . ,- ~.w.r~

,,;4= ----

37
/

2

.0/2

‘0 , $,“ir, uol

I focus

-. ~
12345678910

Number af feflections,s Number of reflections,s

(a) (b)

Fig. 6. Beam evolution after multiple reflection, for various relative
beamwidths. In the curves shown, the incident beamwiclth and inci-
dence angte are held constant at b = 0.4 and y = 42°, respectively, w~lle
Lo)a=0.22. Curve 1: a=2; curve 2: a= 1; curve 3: a=O.2. (a)
Locations of minimum beamwidth .L; and my tube focus, LfO; the ray

tube focus between the first and second refktions lies exterior to the
fiber core. (b) Relative minimum beamwidth, W,/NJ&

reflections has been based on the exponential behavior

only, without inclusion of the algebraic terms in (19).

The total paraxial beam field is from (2), fcr d<ll, –

L,l,

d2(L– L;+ iL~)
=2sLa–(Lo+ib)+L+ _qq&)”2

(15) ‘b 4 ~k
2(L – L:)2 + (Lj)2 “

Defining the beamwidth w so that the exponential ampli-

tude is expressed as exp( – d2/ w2), one observes that the

minimuml beamwidth occurs at

L=L; (16)

rather than at the paraxial ray tube focus L =Lfo(Fig. 5),

and that

L: – Lfo =2sL;b2[(L~ – 2sLO)2+4s2b2] - 1(2sL0– L.)- 1.

(17)

Note that after a sufficiently large number of reflections,

the lengths L: and Lfo become negative (i.e., the beam

waist and the ray tube focus lie in region 2 of Fig. 1) and

approach, zero. However, there can be a marked dif-

ference between the two when the number of reflections is

small and when 2sLO=L= (see Fig. 6(a)).

The relative beamwidth w~/ W. at the minimum is given

for IL; I <:L. by

‘s/wo = La[ (2sL0 – Ld)2 + 4s2b2] -1’2, wo=(2b/k)l’2

(18)

with W. denoting the initial beamwidth at Lo in Fig. 5.

After many reflections, the minimum beamwidth tends to

zero as shown in Fig. 6(b), and the field amplitude tends
to zero since Lf~O. The latter circumstance impllies a

rapid divergence of the beam after many reflections. In

(16), the location of the minimum beamwidth after s

with the square roots so defined that Gb-+ G in (2) when

b-+0. One observes that (19) remains valid at the

beamwidth minimum so that, for the paraxial beam fiddl,

the restrictions imposed on the ray-optical fc)rmula (2)

may be removed. Note, however, that since Lf-+O as

s+ co, the resulting restriction d<<\ LI prohibits observat-

ion points in the narrow focal regicm L-+0, which tlhen

resembles that for the paraxial ray bundle (see (8)).

When the lateral shift on the boundary is included, the

modified paraxial beam field is still given by (191)provided

that (7), (8a), and (8b) are used with Lfo replaced by Lf

Calculations for application to optical fibers, with the

parameters in Fig. 6, based on the modified pamxial beam
field, show no appreciable difference in the minimum

beamwidth and the beam waist location along the shifted

path. Shifted beam considerations can, however, be im-

portant after many reflections and for conversion of the

multiply reflected beam field into azimuthally propagating

eigenmodes [7].

The utility of beam tracking becomes questionable

when the multiply reflected beams can no longer be

individually resolved. It may then be preferable to employ’

the guided mode expansion. The limit of resolution in the

circular cross section is somewhat les~sclearly defined than

for the case of a slab waveguide [6]. Here, the degree of

collimation of the beam may be taken as an appropriate
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sou?ce i

/
Fig. 7. Shifted and nonshifted ray paths for calculation of field after a

single reflection.

measure of the utility of beam tracking. Since the angular

divergence rp of a Gaussian beam is q= 2 tan- ‘(2/kw,),

where w, is the minimum spot size as given in (18), one

may solve for the number of reflections SCcorresponding

to a specified value of C G tan(q/2), recognizing that

kwo>> 1:

,J+:+bz)(y)-bz ,=kw,
Ca

2( L;+ ,2) ‘ 2“

(20)

When C is of the order of unity, the beam is strongly

divergent, and the integer closest to SCmay then be taken

to define a limit on the utility of the multiply reflected

beam tracking procedure.

IV. NmmxucM- RESULTS

The behavior of the beam as it propagates between

successive reflections at the circular wall is described by

the normalized minimum beamwidth w,/ WO and the

minimum beamwidth location as compared with the ray

focus location. Numerical results are given in Fig. 6, for

various relative beamwidths, by changing the radius of the

circular cross section. From Fig. 6(a), it may be observed

that for the smaller relative beamwidth (curve 1), the

minimum beamwidth locations resemble those of the ray

tube focus location. As the relative beamwidth is in-

creased, the minimum beamwidth locations deviate

markedly from the ray focus locations for the first few

reflections, but their behavior becomes similar after many

reflections. One observes from Fig. 6(b) that increasing

the relative beamwidth (by decreasing the radius of the

circular cross section) eventually decreases successive

beamwidth minima w, and hence increases the rate of

beam divergence, as well as the rate at which L: ap-

proaches zero in Fig. 6(a). This behavior is attributed to

the greater boundary curvature sampled by successively

reflected beams under this condition. Though not plotted

in the figure, one may also expect from (18) that as the

waist of the injected beam moves closer to the boundary

(i.e., for a larger ..), the rate of beam divergence in-

creases.

APPENDIX A

DERIVATION OF THE WY-OPTICAL FORMULAS

The formula in (2) can be constructed directly by

ray-optical methods. First, one determines the ray paths

and ray tubes shown in Fig. 1. In cylindrical (p, +)

coordinates, the ray path can be expressed as $ = @(p,p),

where the ray parameter p identifies the initial ray orien-

tation y. via the relation p= a cos Ya. On a ray path, the

functional dependence of @ on p is, for a ray incident in

the counterclockwise direction (see Fig. l(a)),

fP=y>-y<+2sya +#+2n~ (21)

where (p’, ~’) locates the source point S and

Ya=cos-l(P/~)! Y> =c@-l(P/P>)2 Y<=cos -l(P/P<)
(21a)

with p > and p < denoting the greater or smaller values,

respectively, of the radial observation point location p and

source point location p’. The integer n indicates the num-

ber of ray circulations around the cylinder.

The ray tube cross section is calculated from Fig. l(b)

as

*ldpdA =p sin yd+ = (p sin y)@(@/@)p=~~t. = I ~~0

(22)

where p = a cos y. = p cos y characterizes the central ray

and dp is constant along a ray tube. The ray tube cross

section is conveniently tracked along p = constant con-

tours, for which d@/dp is then evaluated from (21); this

leads to the last equality in (22). The procedure remains

valid when @ in (21) is modified to account for the ray

shift upon reflection by adding the term – (s/k)(dO/dp)

to the right-hand side. Equation (22) then becomes mod-

ified as in (7).

The ray-optical field is calculated from

formula

~

the well-known

(23)

where the caret superscript identifies conditions at an

initial reference point along a ray. The initial field can be

referred to the source point (or focal point) by the relation

which, upon inclusion also of the phase shifts at a caustic

and the amplitude and phase change due to reflection,

reduces (23) to (2). It has been verified [7] that this

ray-optical result agrees with the asymptotic expansion of

the rigorous solution.
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APPENDIX B

REFLECTED FIELD ~VALUATION ALONG

CONVENTIONAL N LATERALLY SHIFTED PATHS

In our previous analysis of propagation in plane strati-

fied layers [6], we have shown that while the laterally

shifted ray path must be employed when a ray undergoes

a large number of reflections, the conventional nonshifted

path is adequate to describe fields that have experienced

one or a few reflections. We shall now demonstrate that

the same conclusion is reached for the curved interface

considered in this paper. Proceeding as before [6], we

compare the total reflected field phase at a given observa-

tion point as computed from the phase function Q(p)=

[*( P)+ s6( P)/k] for the nonshifted ray path with that
from the phase function Q( ji) for the laterally shifted ray

path (Fig,, 7); the values p and ~ for the two paths differ

slightly by the amount A = ~’– p. When +( p + A) is expan-

ded in a power series in A, one may show that

A= – (do/dp)(d~/dp* + wf%/kdp’)- 1. (25)

Comparing Q(p) and Q( ~, one finds them to be equiv-

alent provided that

1(.sdO/dp)2[2(d2Q/ dp2)] - ‘1<<1. (26)

851

Translated into geometrical terms (see Fig. 1), condition

(26) becomes

(4@02L~fo ,< ~

k(L – Lfo)
(2!7)

provided that L& Lfo and dfl/dp, d%j dp2 are not exces-

sively large.
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