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Multiply Reflected Gaussian Beams in a
Circular Cross Section

SANG-YUNG SHIN anxp LEOPOLD B. FELSEN, FELLOW, IEEE

Abstract—A well-collimated beam reflected repeatedly within a circular
cross section undergoes periodic focusing and defocusing. This behavior is
of interest for tracking of beams around a type of acoustic surface wave
disk delay line, and it also relates to beam monitoring after oblique
injection into the endface of a multimode optical fiber. The problem is
analyzed by considering first the field excited by an isotropic line source
inside a dielectric cylinder, and then converting this to Gaussian beam
excitation by assigning a complex value to the source coordinate location.
Because the wavelength is small compared to the cylinder radius, ray-opti-
cal methods are employed to construct the solution, with inclusion of such
novel ingredients as the lateral ray shift on a curved boundary. Results are
obtained for the amplitude and phase of the ray and beam fields, and for
such beam parameters as the location of the focus, the minimum beam
width, and the rate of beam divergence between successive reflections.

I. INTRODUCTION AND SUMMARY

HE TRACKING of Gaussian beams undergoing

successive total reflections at a concave boundary
separating two dielectric media is of interest for several
applications. In a type of acoustic surface wave delay line
[1], a well-collimated acoustic beam is launched on the top
surface of a circular piezoelectric disk so that it impinges
obliquely on the rim. After traversing the rim, the beam
passes across the underside of the disk, reemerges on the
top side, and so on. This process can be modeled as
multiple reflection at a circular boundary, with the effects
of the rim accounted for by an equivalent boundary
reflection coefficient. The utility of the device is depen-
dent upon how well the multiply reflected beams remain
collimated; the delayed signal cannot be extracted if the
beam has too great a divergence. Although the piezoe-
lectric disk is anisotropic, a first step requires the under-
standing of the beam behavior in an isotropic environ-
ment. The extension to anisotropy and (or) to noncircular
rims has in fact already been accomplished [2] but is
relegated to a future publication.

Another application is to optical communication where
dielectric fiber waveguides with a homogeneous core are
excited by a Gaussian beam injected obliquely across the
fiber endface. This problem has been treated in the litera-
ture by guided-mode analysis [3]. However, for optical
fiber waveguides with a large core diameter, the direct
tracking of a beam reflected successively at the core
boundary is relevant since the spot size of a focused
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incident beam is then small compared to the fiber cross
section and requires the superposition of many guided
modes. It may therefore be advantageous to track the
incident beam directly into the fiber rather than to express
the field at the outset in terms of a modal expansion. The
conversion to guided modes may be performed at that
location along the waveguide where the multiply reflected
beams can no longer be individually resolved. The three-
dimensional tracking problem may be better understood
with a priori knowledge of the behavior of the cross-sec-
tional fields. While the multiply reflected beam in a wave-
guide with constant refractive index continues to expand
in the axial direction, the concave curvature of the
boundary causes successive refocusing in the cross-sec-
tional plane. Such refocusing of the three-dimensional
beam field, and indeed its basic cross-sectional character-
istics, are contained fully within the axially independent
solution for a sheet beam that is launched in a circular
domain. The results developed here have subsequently
been employed for three-dimensional analysis [4].

Finally, the two-dimensional beam solution is of inter-
est for application to curved layers encountered in in-
tegrated optics, when the beam field is injected, so as to
cling to the outer boundary (whispering gallery type of
propagation).

To effect the solution of the beam problem, we employ
a recently formulated new technique whereby an incident
two-dimensional Gaussian beam is generated from an
incident line source (cylindrical wave) field by assigning
complex values to the source coordinates [S]. Thus the
Green’s function problem, long of interest in radiation
and diffraction theory, is also fundamental for the calcu-
lation of fields due to Gaussian beams. For the applica-
tions addressed here, attention is focused on high-
frequency asymptotic solutions. These can be developed
directly by ray-optical methods, without the need for
departing initially from an exact formulation of the field
problem. Apart from yielding the desired information
directly, the ray-optical method is important because it
can, within the present context, accommodate geometries,
such as noncircular domains and(or) anisotropic material,
for which exact solutions are not available.

While the complex-source-point technique converts the
ray-optical field into a general beam field, it is adequate
(for beams that remain well collimated) to consider only
the paraxial region surrounding the beam axis since the
field elsewhere is very small. Under these conditions, it
suffices to restrict the source-excited ray-optical field to
the vicinity of a central ray that subsequently becomes the
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beam axis, i.e., it is adequate to treat a particular thin ray
bundle rather than the entire family of rays. It is then
found that the real parameters governing the phase and
amplitude behavior of the field in the ray bundle also
describe the field in the Gaussian beam when the analytic
continuation to complex source point coordinates is per-
formed. Thus, as in the parallel plane case [6], a rigorous
link is provided between point-source-excited ray optics
and paraxial beam optics, in terms of the conventional
ray-optical parameters which have strong physical con-
tent. This aspect facilitates examination of the multiply
reflected beam field solution with respect to periodic
refocusing, beam spreading, and other physical attributes.
Some numerical results provide further insight into these
propagation phenomena.

Fundamental to the study of multiply reflected beams is
the treatment of a single reflection. When, as in our case,
the beam impinges at an angle larger than the critical
angle for total reflection, the reflected beam emerges from
a shifted position. This lateral shift for rays or beams, not
previously explored for a curved boundary, has been
developed and incorporated into our theory. While inclu-
sion of the lateral shift may be inconsequential at a single
reflection, the shifts accumulate for multiple reflections
and are in fact essential when one wishes to convert the
multiply reflected ray or beam fields into eigenmode fields
in the circular cross section; omission of the lateral shift
leads to an incorrect dispersion equation for the eigen-
modes. These conclusions are similar to those noted previ-
ously for the planar geometry [6], and they have been
confirmed by comparing the ray-optical fields employed
here with the asymptotic solution of the rigorously for-
mulated Green’s function [7]. It should be emphasized
that the remarks above apply to the general case where
the refractive index contrast between the dielectric wave-
guide and the exterior may be substantial. For the optical
fiber with small index difference between core and clad-
ding, the effects of the lateral shifts are minimized.

The presentation is arranged as follows. Section II-A
contains the two-dimensional ray-optical fields excited by
an axial line source, their paraxial approximations in the
vicinity of a preferred ray, and the effects of including or
omitting the lateral shifts for totally reflected rays on a
boundary with incidence-angle-dependent reflection coef-
ficient. Some details pertaining to the ray-optical formulas
are given in Appendix A, and the legitimacy of ignoring
the ray shift for fields having undergone only a few
reflections is demonstrated in Appendix B. The conver-
sion of the line-source and point-source-excited fields to
beam fields is performed in Section III. Included in the
presentation are ray diagrams that provide a physical
understanding of the behavior of the various field solu-
tions and also numerical results for quantitative assess-
ment of the evolution of the multiply reflected beam
profile. The discussion of these results in Section IV
- provides further insight into the beam behavior.

II. RaY-OpticAL FIELDS

A. General Ray-Optical Fields

The incident field due to an electric line source in an

unbounded dielectric is normalized so that G is the
infinite space Green’s function
P poupy<ii/
Gmc 4 HO (kD) 4 akD
exp (kD+iw/4), kD>1 (1)

where & is the wavenumber in the medium and D is the
distance from the source. A time dependence exp(— iwt) is
suppressed. Then the axial electric field G along a ray
after a single reflection at the wall with radius “a” is given
in [8]. As shown in Appendix A, the ray-optical field after
s reflections can be constructed in a similar manner by
ray tracing and monitoring the ray tube cross section. The
result is

i 2 LfO 1/2 1 ik i( :
~_-‘ ’_ __Jv . KN —i(w /2o, —i(n/4)
G 4 77'k I L— LjO l Lé/z Ir(Ya)l e e S
2)

Y=2sL,— Ly+ L+50(y,) (2a)

and T'(y,)=|T'(y,)| exp [if(y,)] is the boundary reflection
coefficient. The lengths L, Leg, Ly, and L, defined in Fig.
1, are measured from the perpendicular bisector of the
central ray (shown dashed) in a ray tube: L,=a sin v, is
the half length of the central ray between reflections, L,
locates the source point S, Ly, is the distance to a ray tube
focus (point of tangency of the central ray with the caustic
of the reflected ray family, which is not shown), and L is
the distance to an observation point. The focal distance is
given by

where

- 1 1 2
Lo=L,L(L,—2sL)) 'or —=— -2 (3
“fO 0 O) LfO LO L ( )

a

Thus the focus moves toward the center of the reflected
ray cord (i.e, L;—0) as the number s of reflections
increases sufficiently. The orientation of the central ray is
fixed by the angle v,. Depending on location along the
multiply reflected ray, L and Ly, may be positive or
negative; in regions 1, they are positive, while in regions 2,
they are negative. Focusing need not occur after every
reflection (o; counts the number of times that the central
ray passes through a ray tube focus). In fact, a real focus
L= Ly is possible only when L and Ly have the same
algebraic sign, and when |Ly|<L,; otherwise, there will
be a virtual focus. The following rule concerning solutions
of the equation L= L, is found to apply:

s>(L,/2Ly)+1/2, real focus in region 1
s<(L,/2Ly)—1/2, real focus in region 2
L 1 _ I, 1
2, 2 <s< 2L, +55 no real focus. 4)

It may also be noted from (3) that 2sL,= L, implies that



SHIN AND FELSEN: MULTIPLY REFLECTED GAUSSIAN BEAMS

847

®

psiny dé

a4

L. 4SS
o
/ /

Multiply reflected ray and ray tube (without lateral shift). (a)

Fig. 1.

Multiply reflected ray. (b) Calculation of ray tube cross section (see

Appendix A).

Fig. 2. Multiply reflected ray and ray tube (with lateral shift).

the reflected ray tube, after s reflections and before the
next reflection, is made up of parallel rays.

After total reflection at the wall, the ray emerges with
an amplitude modified by the reflection coefficient [7]
siny, —i(cos?y, — n2)1/2(1 ~id)
siny, + i(cos®y, — n2)1/2(1 ~if)

=[T(v.)lexp[#(v.)] (5)

where the relative refractive index » is smaller than unity
and

T(v,)~

0S ‘Ya[

8 =exp {—ZkafC (cos 74)2/72—1]1/2417}. (52)
The parameter § arises from the leakage of the totally
reflected incident ray field across the concave boundary;
it is assumed that the leakage is small. Then to the first
order in §:
4si
I'(y)l=1- —ﬂ( cos 2y, — n2)1/28
1—n?

o(y,)=—-2 tan”‘[(coszy,, - nz)l/z/sin ya]. (5¢)

(5b)

The total field at an observation point p, as computed
by ray optics, is given by the sum of all fields along rays
passing through p. This implies inclusion of all rays with
such initial angles that they reach p after an appropriate
number of reflections. Formula (2) evidently fails when
L— Ly, and must then be augmented by a caustic transi-
tion function [8]. For the present, we shall exclude such
observation points from our considerations; this does not
restrict, however, the subsequent complete description of
the beam field (see (19)).

If the ray is to be tracked over many reflections, it is
appropriate to employ the modified trajectories and fields
obtained when the lateral ray shift L, on the boundary is
included. In that event, the central ray is displaced (shown
in Fig. 2) with the optical length ¢ in (2a) modified to
read

Yy=2sL,~ L +L+s0(y)—~s———i— cosy,. (6)

a 0 a k d( cos Ya) a
The ray shift is given by L, = —df/dk,, where
ky,=k cos vy, is the wavenumber along the ¢ direction.
This expression is inferred from the known shift for a
plane boundary [6] by regarding the angular coordinate ¢
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Fig. 3. Parameters for paraxial approximation.

at the point of impact of the ray as locally rectilinear. It
can be shown [7] that L, determined by this procedure is
in accord with the rigorously derived result. The corre-
sponding phase accumulation at each reflection is then
kyL, as in (6). The term |Ly(L— Ly)~"| in (2) becomes
(see Appendix A)

Lfo

=L 'n
LI,

_ s LL,, d0
Pk @ d(cosy,)

L

The lengths L, L,, and Ly, are now measured along the
new trajectories.

It can be shown that, at a given observation point, the
field computed from (2) and (5) with the nonshifted path
in Fig. 1 agrees with the field computed from (6) and (7)
with the laterally shifted path in Fig. 2 provided that the
number of reflections is small and that L#Lg. This is
analogous to the result found previously for the plane
stratified layer problem [6]; the derivation is sketched in
Appendix B. Elsewhere [6], [7] we have performed a
calculation whereby the multiply reflected ray fields are
summed into guided modes and have shown that the
laterally shifted paths must be utilized in order to obtain
the correct asymptotic modal dispersion equation. How-
ever, for ray tracing with only a few reflections, the
conventional nonshifted ray paths can be retained.

B. Paraxial Approximation

The ray-optical fields in (2) or their ray-shift-modified
form in (6) and (7) are now expressed so that they de-
scribe observation points in the vicinity of the central ray
in terms of quantities pertaining to that ray. This is
accomplished by expanding the phase along a neighboring
ray in terms of the parameters for the central ray (the ray
amplitude is insensitive to this correction). Thus introduc-
ing a perpendicular distance d from a point p on the
central ray to an observation point p=(p,d), one finds
that, without inclusion of the lateral shift (see Fig. 3),

2

W(p,d)=2sL,— Ly+ L+ 2d_R +58(v,), R=L~Ly

)

provided that d<|R|. Subject to this modification, the
formulas in (2) or in (6) and (7) describe the field in the
paraxial region about the central ray defined by the angle
¥,- Note that R is the radius of curvature of the wave-
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Fig. 4. Parameters for beam excitation.

front, positive for convex and negative for concave curva-
tures.

When the lateral ray shift on the boundary is included,
Y(p,d) in (8) must be modified to read

2
Y(p,d)=2sL,— Lo+ L+ -25%- +56(y,)

s dad
- E m Cos v, (83.)
where
s LLy 4%
R=L-L,—3 47 (8b)
kg2 d(cos v, )

III.

The preceding results for line-source-excited fields can
be converted into excitation by a sheet beam by assigning
a complex value to the source point. If the beam axis is
inclined at an angle a with respect to the positive x axis
and the beam waist is centered at x, thereon, one replaces
[5] the real source point (x’,p") by (xy+ ib cos a, ib sin a),
where b is a positive constant related to the beam width
wp at the waist by b=kw(/2 (see Fig. 4). Thus the polar
source coordinates (p’,¢") are transformed into

MuLtirLY REFLECTED BEaM FIELDS

p'=(x2+y?)"?= [ (py cos a+ib)* +p3 sin za]l/z

i Y N i _ibsina
¢ =tan (x’) tan (p0+ibcosa)

= cos ’1(%%101—)—(—721—01) (10)

where py=(x2+y3)'/?= x,,

Since py cos a= L, one observes from the expression
for p’, and for ¢’ expressed in terms of p’, that the above
transformations from line source to beam fields can be
accomplished by the replacement

©)

Ly—Ly+ib. (11)
The focal distance L, becomes, accordingly,
L (L,+ib) )
L [ A . i A— r o

IS L2l ip) T (12)



SHIN AND FELSEN: MULTIPLY REFLECTED GAUSSIAN BEAMS

Fig. 5. Multiply reflected paraxial beam. A and B denote the loca-
tions of the ray tube foci and beam foci, respectively.

where
, Lo(L,~2sL;)—2sb?
=L, > — (13)
(L,—2sLy)" +4s%
) 12
Lf’=b e (14)

—2s5ly) +4s .
L,—2sLo) +4s%?

From (8), the paraxially approximated optical length be-
comes, omitting the lateral shift,

d2
2(L—Lf—iL})
d*(L—L{ +iL})
2AL- L) +(Lj)

Defining the beamwidth w so that the exponential ampli-
tude is expressed as exp(—d?/w?), one observes that the
minimum beamwidth occurs at

L=L;

Y,=2sL,— (Lo+ib)+ L+

=2sL,—(Ly+ib)+ L+

(15)

(16)

rather than at the paraxial ray tube focus L =L.(Fig. 5),
and that

Lf— Ly =2sL2b?[ (L, —2sLo)* +4s%*] ~'(2sL,— L,) ™"
(17)

Note that after a sufficiently large number of reflections,
the lengths L/ and L; become negative (i.e., the beam
waist and the ray tube focus lie in region 2 of Fig. 1) and
approach zero. However, there can be a marked dif-
ference between the two when the number of reflections is
small and when 2sLy~ 1, (see Fig. 6(a)).

The relative beamwidth w, /w, at the minimum is given
for |L/| <L, by

wy/wo= L[ (2sLy— LY +4s%%] "%, wo=(2b/k)"*

(18)

with wg, denoting the initial beamwidth at L, in Fig. 5.
After many reflections, the minimum beamwidth tends to
zero as shown in Fig. 6(b), and the field amplitude tends
to zero since L,—0. The latter circumstance implies a
rapid divergence of the beam after many reflections. In
(16), the location of the minimum beamwidth after s
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Fig. 6. Beam evolution after multiple reflection, for various relative
beamwidths. In the curves shown, the incident beamwidth and inci-
dence angle are held constant at b=0.4 and y =42, respectively, while
Ly/a=022. Curve 1: a=2; curve 2: a=1; curve 3: a=02. (a)
Locations of minimum beamwidth L] and ray tube focus Ly,; the ray
tube focus between the first and second reflections lies exterior to the
fiber core. (b) Relative minimum beamwidth w,/wy,.

o

Number of reflections,s

reflections has been based on the exponential behavior
only, without inclusion of the algebraic terms in (19).
The total paraxial beam field is from (2), for d<|L—
Ly
“fls

iz (L \”

1

. 5 ik, — in /4
L) IT(v.)le :
0

with the square roots so defined that G,—G in (2) when
b—0. One observes that (19) remains valid at the
beamwidth minimum so that, for the paraxial beam field,
the restrictions imposed on the ray-optical formula (2)
may be removed. Note, however, that since L—0 as
s—o0, the resulting restriction d<|L| prohibits observa-
tion points in the narrow focal region L—0, which then
resembles that for the paraxial ray bundle (see (8)).

When the lateral shift on the boundary is included, the
modified paraxial beam field is still given by (19) provided
that (7), (8a), and (8b) are used with L, replaced by L.
Calculations for application to optical fibers with the
parameters in Fig. 6, based on the modified paraxial beam
field, show no appreciable difference in the minimum
beamwidth and the beam waist location along the shifted
path. Shifted beam considerations can, however, be im-
portant after many reflections and for conversion of the
multiply reflected beam field into azimuthally propagating
eigenmodes [7]. .

The utility of beam tracking becomes questionable
when the multiply reflected beams can no longer be
individually resolved. It may then be preferable io employ
the guided mode expansion. The limit of resolution in the
circular cross section is somewhat less clearly defined than
for the case of a slab waveguide [6]. Here, the degree of
collimation of the beam may be taken as an appropriate
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source

Fig. 7. Shifted and nonshifted ray paths for calculation of field after a
single reflection.

measure of the utility of beam tracking. Since the angular
divergence ¢ of a Gaussian beam is =2 tan™'(2/kw,),
where w, is the minimum spot size as given in (18), one
may solve for the number of reflections s, corresponding
to a specified value of C=tan(¢/2), recognizing that
kwy>1:

L0+\/(Lg+b2)(ﬂ29£)—b2
~L, b

2(L+p?) ’ 2

(20)
When C is of the order of unity, the beam is strongly
divergent, and the integer closest to s, may then be taken

to define a limit on the utility of the multiply reflected
beam tracking procedure.

N

c

IV. NUMERICAL RESULTS

The behavior of the beam as it propagates between
successive reflections at the circular wall is described by
the normalized minimum beamwidth w,/w, and the
minimum beamwidth location as compared with the ray
focus location. Numerical results are given in Fig. 6, for
various relative beamwidths, by changing the radius of the
circular cross section. From Fig. 6(a), it may be observed
that for the smaller relative beamwidth (curve 1), the
minimum beamwidth locations resemble those of the ray
tube focus location. As the relative beamwidth is in-
creased, the minimum beamwidth locations deviate
markedly from the ray focus locations for the first few
reflections, but their behavior becomes similar after many
reflections. One observes from Fig. 6(b) that increasing
the relative beamwidth (by decreasing the radius of the
circular cross section) eventually decreases successive
beamwidth minima w, and hence increases the rate of
beam divergence, as well as the rate at which L/ ap-
proaches zero in Fig. 6(a). This behavior is attributed to
the greater boundary curvature sampled by successively
reflected beams under this condition. Though not plotted
in the figure, one may also expect from (18) that as the
waist of the injected beam moves closer to the boundary
(ie., for a larger L), the rate of beam divergence in-
creases.

APPENDIX A
DERIVATION OF THE RAY-OPTICAL FORMULAS

The formula in (2) can be constructed directly by
ray-optical methods. First, one determines the ray paths
and ray tubes shown in Fig. 1. In cylindrical (p, ¢)

coordinates, the ray path can be expressed as ¢=¢(p, 1),
where the ray parameter p identifies the initial ray orien-
tation v, via the relation p=a cos y,. On a ray path, the
functional dependence of ¢ on p is, for a ray incident in
the counterclockwise direction (see Fig. 1(a)),

¢=vs — Y +2sy,+¢'+2n7w

(1)

where (p’,¢") locates the source point § and

Ya=cos~'(u/a), ys=cos™'(1/ps), Y =cos "'(n/p.)
(21a)

with p> and p< denoting the greater or smaller values,
respectively, of the radial observation point location p and
source point location p’. The integer » indicates the num-
ber of ray circulations around the cylinder.

The ray tube cross section is calculated from Fig. 1(b)
as

L - LfO
Lfo

dA =p sin ydp=(p sin y)dp(dé/ dp)o=cons:. =1 | dp.

(2)

where u=a cos y,=p cos y characterizes the central ray
and dp is constant along a ray tube. The ray tube cross
section is conveniently tracked along p=constant con-
tours, for which do/du is then evaluated from (21); this
leads to the last equality in (22). The procedure remains
valid when ¢ in (21) is modified to account for the ray
shift upon reflection by adding the term —(s/k)(df/ du)
to the right-hand side. Equation (22) then becomes mod-
ified as in (7).

The ray-optical field is calculated from the well-known

formula
~T ik(¢—113) _dA
u~ie \ /

where the caret superscript identifies conditions at an
initial reference point along a ray. The initial field can be
referred to the source point (or focal point) by the relation

. —ws 1] 2 .
de k¢~ZVkaO exp(im/4)

which, upon inclusion also of the phase shifts at a caustic
and the amplitude and phase change due to reflection,
reduces (23) to (2). It has been verified [7] that this
ray-optical result agrees with the asymptotic expansion of
the rigorous solution.

(23)

(29)
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APPENDIX B
REFLECTED FIELD EVALUATION ALONG
CONVENTIONAL AND LATERALLY SHIFTED PATHS

In our previous analysis of propagation in plane strati-
fied layers [6], we have shown that while the laterally
shifted ray path must be employed when a ray undergoes
a large number of reflections, the conventional nonshifted
path is adequate to describe fields that have experienced
one or a few reflections. We shall now demonstrate that
the same conclusion is reached for the curved interface
considered in this paper. Proceeding as before [6], we
compare the total reflected field phase at a given observa-
tion point as computed from the phase function Q(p)=
[Y(p)+s6(p)/ k] for the nonshifted ray path with that
from the phase function Q( ) for the laterally shifted ray
path (Fig. 7); the values p and p for the two paths differ
slightly by the amount A= — u. When ( p+A) is expan-
ded in a power series in A, one may show that

A= —(d8/dp)(dX/dp*+sd0/kdp®)~".  (25)

Comparing Q( ) and Q( ), one finds them to be equiv-
alent provided that

|(sd8 / dp)*[ 2(d*Q/ dp?)] | <1. (26)

851
Translated into geometrical terms (see Fig. 1), condition
(26) becomes
sdf/dp)’LL
(o dw? Ly -
k(L— Ly)

provided that Lz¢ Ly, and df/dy, d0/du’ are not exces-
sively large.

<1
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